A dataset from a simulation study with 150 data-generating mechanisms, useful to illustrate nested loop plots. This simulation study aims to compare the Cox model and flexible parametric models in a variety of scenarios: different baseline hazard functions, sample size, and varying amount of heterogeneity unaccounted for in the model (simulated as white noise with a given variance). A Cox model and a Royston-Parmar model with 5 degrees of freedom are fit to each replication.
Format
A data frame with 30,000 rows and 10 variables:
dgmData-generating mechanism, 1 to 150.iSimulated dataset number.modelMethod used, with 1 the Cox model and 2 the RP(5) model.bPoint estimate for the log-hazard ratio.seStandard error of the point estimate.baselineBaseline hazard function of the simulated dataset.ssSample size of the simulated dataset.esigmaStandard deviation of the white noise.pars(Ancillary) Parameters of the baseline hazard function.
Note
Further details on this simulation study can be found in the R script used to generate this dataset, available on GitHub: https://github.com/ellessenne/rsimsum/blob/master/data-raw/nlp-data.R
References
Cox D.R. 1972. Regression models and life-tables. Journal of the Royal Statistical Society, Series B (Methodological) 34(2):187-220. doi:10.1007/978-1-4612-4380-9_37
Royston, P. and Parmar, M.K. 2002. Flexible parametric proportional-hazards and proportional-odds models for censored survival data, with application to prognostic modelling and estimation of treatment effects. Statistics in Medicine 21(15):2175-2197 doi:10.1002/sim.1203
Rücker, G. and Schwarzer, G. 2014. Presenting simulation results in a nested loop plot. BMC Medical Research Methodology 14:129 doi:10.1186/1471-2288-14-129
Examples
data("nlp", package = "rsimsum")