The summary()
method for objects of class simsum
returns confidence intervals for performance measures based on Monte Carlo standard errors.
Usage
# S3 method for simsum
summary(object, ci_level = 0.95, df = NULL, stats = NULL, ...)
Arguments
- object
An object of class
simsum
.- ci_level
Significance level for confidence intervals based on Monte Carlo standard errors. Ignored if a
simsum
object with control parametermcse = FALSE
is passed.- df
Degrees of freedom of a t distribution that will be used to calculate confidence intervals based on Monte Carlo standard errors. If
NULL
(the default), quantiles of a Normal distribution will be used instead. However, using Z-based or t-based confidence intervals is valid only for summary statistics such a bias and coverage. Confidence intervals for other quantities may not be appropriate, therefore their usage is not recommended.- stats
Summary statistics to include; can be a scalar value or a vector (for multiple summary statistics at once). Possible choices are:
nsim
, the number of replications with non-missing point estimates and standard error.thetamean
, average point estimate.thetamedian
, median point estimate.se2mean
, average variance.se2median
, median variance.bias
, bias in point estimate.rbias
, relative (to the true value) bias in point estimate.empse
, empirical standard error.mse
, mean squared error.relprec
, percentage gain in precision relative to the reference method.modelse
, model-based standard error.relerror
, relative percentage error in standard error.cover
, coverage of a nominallevel
\becover
, bias corrected coverage of a nominallevel
\power
, power of a (1 -level
)\
Defaults to
NULL
, in which case all possible summary statistics are included.- ...
Ignored.
Examples
data("MIsim")
object <- simsum(
data = MIsim, estvarname = "b", true = 0.5, se = "se",
methodvar = "method"
)
#> 'ref' method was not specified, CC set as the reference
xs <- summary(object)
xs
#> Values are:
#> Point Estimate (Monte Carlo Standard Error)
#>
#> Non-missing point estimates/standard errors:
#> CC MI_LOGT MI_T
#> 1000 1000 1000
#>
#> Average point estimate:
#> CC MI_LOGT MI_T
#> 0.5168 0.5009 0.4988
#>
#> Median point estimate:
#> CC MI_LOGT MI_T
#> 0.5070 0.4969 0.4939
#>
#> Average variance:
#> CC MI_LOGT MI_T
#> 0.0216 0.0182 0.0179
#>
#> Median variance:
#> CC MI_LOGT MI_T
#> 0.0211 0.0172 0.0169
#>
#> Bias in point estimate:
#> CC MI_LOGT MI_T
#> 0.0168 (0.0048) 0.0009 (0.0042) -0.0012 (0.0043)
#>
#> Relative bias in point estimate:
#> CC MI_LOGT MI_T
#> 0.0335 (0.0096) 0.0018 (0.0083) -0.0024 (0.0085)
#>
#> Empirical standard error:
#> CC MI_LOGT MI_T
#> 0.1511 (0.0034) 0.1320 (0.0030) 0.1344 (0.0030)
#>
#> % gain in precision relative to method CC:
#> CC MI_LOGT MI_T
#> 0.0000 (0.0000) 31.0463 (3.9375) 26.3682 (3.8424)
#>
#> Mean squared error:
#> CC MI_LOGT MI_T
#> 0.0231 (0.0011) 0.0174 (0.0009) 0.0181 (0.0009)
#>
#> Model-based standard error:
#> CC MI_LOGT MI_T
#> 0.1471 (0.0005) 0.1349 (0.0006) 0.1338 (0.0006)
#>
#> Relative % error in standard error:
#> CC MI_LOGT MI_T
#> -2.6594 (2.2055) 2.2233 (2.3323) -0.4412 (2.2695)
#>
#> Coverage of nominal 95% confidence interval:
#> CC MI_LOGT MI_T
#> 0.9430 (0.0073) 0.9490 (0.0070) 0.9430 (0.0073)
#>
#> Bias-eliminated coverage of nominal 95% confidence interval:
#> CC MI_LOGT MI_T
#> 0.9400 (0.0075) 0.9490 (0.0070) 0.9430 (0.0073)
#>
#> Power of 5% level test:
#> CC MI_LOGT MI_T
#> 0.9460 (0.0071) 0.9690 (0.0055) 0.9630 (0.0060)