The summary() method for objects of class simsum returns confidence intervals for performance measures based on Monte Carlo standard errors.
Usage
# S3 method for simsum
summary(object, ci_level = 0.95, df = NULL, stats = NULL, ...)Arguments
- object
An object of class
simsum.- ci_level
Significance level for confidence intervals based on Monte Carlo standard errors. Ignored if a
simsumobject with control parametermcse = FALSEis passed.- df
Degrees of freedom of a t distribution that will be used to calculate confidence intervals based on Monte Carlo standard errors. If
NULL(the default), quantiles of a Normal distribution will be used instead. However, using Z-based or t-based confidence intervals is valid only for summary statistics such a bias and coverage. Confidence intervals for other quantities may not be appropriate, therefore their usage is not recommended.- stats
Summary statistics to include; can be a scalar value or a vector (for multiple summary statistics at once). Possible choices are:
nsim, the number of replications with non-missing point estimates and standard error.thetamean, average point estimate.thetamedian, median point estimate.se2mean, average variance.se2median, median variance.bias, bias in point estimate.rbias, relative (to the true value) bias in point estimate.empse, empirical standard error.mse, mean squared error.relprec, percentage gain in precision relative to the reference method.modelse, model-based standard error.relerror, relative percentage error in standard error.cover, coverage of a nominallevel\becover, bias corrected coverage of a nominallevel\power, power of a (1 -level)\
Defaults to
NULL, in which case all possible summary statistics are included.- ...
Ignored.
Examples
data("MIsim")
object <- simsum(
data = MIsim, estvarname = "b", true = 0.5, se = "se",
methodvar = "method"
)
#> 'ref' method was not specified, CC set as the reference
xs <- summary(object)
xs
#> Values are:
#> Point Estimate (Monte Carlo Standard Error)
#>
#> Non-missing point estimates/standard errors:
#> CC MI_LOGT MI_T
#> 1000 1000 1000
#>
#> Average point estimate:
#> CC MI_LOGT MI_T
#> 0.5168 0.5009 0.4988
#>
#> Median point estimate:
#> CC MI_LOGT MI_T
#> 0.5070 0.4969 0.4939
#>
#> Average variance:
#> CC MI_LOGT MI_T
#> 0.0216 0.0182 0.0179
#>
#> Median variance:
#> CC MI_LOGT MI_T
#> 0.0211 0.0172 0.0169
#>
#> Bias in point estimate:
#> CC MI_LOGT MI_T
#> 0.0168 (0.0048) 0.0009 (0.0042) -0.0012 (0.0043)
#>
#> Relative bias in point estimate:
#> CC MI_LOGT MI_T
#> 0.0335 (0.0096) 0.0018 (0.0083) -0.0024 (0.0085)
#>
#> Empirical standard error:
#> CC MI_LOGT MI_T
#> 0.1511 (0.0034) 0.1320 (0.0030) 0.1344 (0.0030)
#>
#> % gain in precision relative to method CC:
#> CC MI_LOGT MI_T
#> 0.0000 (0.0000) 31.0463 (3.9375) 26.3682 (3.8424)
#>
#> Mean squared error:
#> CC MI_LOGT MI_T
#> 0.0231 (0.0011) 0.0174 (0.0009) 0.0181 (0.0009)
#>
#> Model-based standard error:
#> CC MI_LOGT MI_T
#> 0.1471 (0.0005) 0.1349 (0.0006) 0.1338 (0.0006)
#>
#> Relative % error in standard error:
#> CC MI_LOGT MI_T
#> -2.6594 (2.2055) 2.2233 (2.3323) -0.4412 (2.2695)
#>
#> Coverage of nominal 95% confidence interval:
#> CC MI_LOGT MI_T
#> 0.9430 (0.0073) 0.9490 (0.0070) 0.9430 (0.0073)
#>
#> Bias-eliminated coverage of nominal 95% confidence interval:
#> CC MI_LOGT MI_T
#> 0.9400 (0.0075) 0.9490 (0.0070) 0.9430 (0.0073)
#>
#> Power of 5% level test:
#> CC MI_LOGT MI_T
#> 0.9460 (0.0071) 0.9690 (0.0055) 0.9630 (0.0060)