Print method for summary.multisimsum
objects
Usage
# S3 method for summary.multisimsum
print(x, digits = 4, mcse = TRUE, ...)
Arguments
- x
An object of class
summary.multisimsum
.- digits
Number of significant digits used for printing. Defaults to 4.
- mcse
Should Monte Carlo standard errors be reported? If
mcse = FALSE
, confidence intervals based on Monte Carlo standard errors will be reported instead, seesummary.multisimsum()
. If aNULL
value is passed, only point estimates are printed regardless of whether Monte Carlo standard errors were computed or not. Defaults toTRUE
.- ...
Ignored.
Examples
data(frailty)
ms <- multisimsum(
data = frailty, par = "par", true = c(
trt = -0.50,
fv = 0.75
), estvarname = "b", se = "se", methodvar = "model",
by = "fv_dist"
)
#> 'ref' method was not specified, Cox, Gamma set as the reference
sms <- summary(ms, stats = c("bias", "cover", "mse"))
sms
#> Values are:
#> Point Estimate (Monte Carlo Standard Error)
#>
#>
#> Parameter: fv
#>
#> Bias in point estimate:
#> fv_dist Cox, Gamma Cox, Log-Normal RP(P), Gamma
#> Gamma -0.0124 (0.0045) 0.2299 (0.0076) -0.0179 (0.0044)
#> Log-Normal -0.1064 (0.0043) -0.0175 (0.0049) -0.1066 (0.0041)
#> RP(P), Log-Normal
#> 0.2347 (0.0077)
#> -0.0152 (0.0050)
#>
#> Mean squared error:
#> fv_dist Cox, Gamma Cox, Log-Normal RP(P), Gamma RP(P), Log-Normal
#> Gamma 0.0203 (0.0010) 0.1107 (0.0055) 0.0195 (0.0009) 0.1145 (0.0057)
#> Log-Normal 0.0287 (0.0010) 0.0244 (0.0011) 0.0284 (0.0010) 0.0248 (0.0012)
#>
#> Coverage of nominal 95% confidence interval:
#> fv_dist Cox, Gamma Cox, Log-Normal RP(P), Gamma RP(P), Log-Normal
#> Gamma 0.9201 (0.0087) 0.9220 (0.0085) 0.9300 (0.0082) 0.9030 (0.0094)
#> Log-Normal 0.7503 (0.0140) 0.9020 (0.0094) 0.7683 (0.0134) 0.9280 (0.0082)
#>
#> --------------------------------------------------------------------------------
#>
#> Parameter: trt
#>
#> Bias in point estimate:
#> fv_dist Cox, Gamma Cox, Log-Normal RP(P), Gamma
#> Gamma -0.0006 (0.0016) -0.0013 (0.0016) -0.0003 (0.0016)
#> Log-Normal -0.0006 (0.0015) -0.0014 (0.0015) -0.0006 (0.0015)
#> RP(P), Log-Normal
#> -0.0015 (0.0016)
#> -0.0016 (0.0015)
#>
#> Mean squared error:
#> fv_dist Cox, Gamma Cox, Log-Normal RP(P), Gamma RP(P), Log-Normal
#> Gamma 0.0026 (0.0001) 0.0026 (0.0001) 0.0026 (0.0001) 0.0026 (0.0001)
#> Log-Normal 0.0022 (0.0001) 0.0022 (0.0001) 0.0022 (0.0001) 0.0022 (0.0001)
#>
#> Coverage of nominal 95% confidence interval:
#> fv_dist Cox, Gamma Cox, Log-Normal RP(P), Gamma RP(P), Log-Normal
#> Gamma 0.9500 (0.0069) 0.9490 (0.0070) 0.9506 (0.0070) 0.9500 (0.0069)
#> Log-Normal 0.9410 (0.0075) 0.9420 (0.0074) 0.9428 (0.0074) 0.9430 (0.0073)
# Printing less significant digits:
print(sms, digits = 3)
#> Values are:
#> Point Estimate (Monte Carlo Standard Error)
#>
#>
#> Parameter: fv
#>
#> Bias in point estimate:
#> fv_dist Cox, Gamma Cox, Log-Normal RP(P), Gamma RP(P), Log-Normal
#> Gamma -0.012 (0.005) 0.230 (0.008) -0.018 (0.004) 0.235 (0.008)
#> Log-Normal -0.106 (0.004) -0.017 (0.005) -0.107 (0.004) -0.015 (0.005)
#>
#> Mean squared error:
#> fv_dist Cox, Gamma Cox, Log-Normal RP(P), Gamma RP(P), Log-Normal
#> Gamma 0.020 (0.001) 0.111 (0.005) 0.020 (0.001) 0.114 (0.006)
#> Log-Normal 0.029 (0.001) 0.024 (0.001) 0.028 (0.001) 0.025 (0.001)
#>
#> Coverage of nominal 95% confidence interval:
#> fv_dist Cox, Gamma Cox, Log-Normal RP(P), Gamma RP(P), Log-Normal
#> Gamma 0.920 (0.009) 0.922 (0.008) 0.930 (0.008) 0.903 (0.009)
#> Log-Normal 0.750 (0.014) 0.902 (0.009) 0.768 (0.013) 0.928 (0.008)
#>
#> --------------------------------------------------------------------------------
#>
#> Parameter: trt
#>
#> Bias in point estimate:
#> fv_dist Cox, Gamma Cox, Log-Normal RP(P), Gamma RP(P), Log-Normal
#> Gamma -0.001 (0.002) -0.001 (0.002) -0.000 (0.002) -0.002 (0.002)
#> Log-Normal -0.001 (0.001) -0.001 (0.001) -0.001 (0.001) -0.002 (0.001)
#>
#> Mean squared error:
#> fv_dist Cox, Gamma Cox, Log-Normal RP(P), Gamma RP(P), Log-Normal
#> Gamma 0.003 (0.000) 0.003 (0.000) 0.003 (0.000) 0.003 (0.000)
#> Log-Normal 0.002 (0.000) 0.002 (0.000) 0.002 (0.000) 0.002 (0.000)
#>
#> Coverage of nominal 95% confidence interval:
#> fv_dist Cox, Gamma Cox, Log-Normal RP(P), Gamma RP(P), Log-Normal
#> Gamma 0.950 (0.007) 0.949 (0.007) 0.951 (0.007) 0.950 (0.007)
#> Log-Normal 0.941 (0.007) 0.942 (0.007) 0.943 (0.007) 0.943 (0.007)
# Printing confidence intervals:
print(sms, digits = 3, mcse = FALSE)
#> Values are:
#> Point Estimate (95% Confidence Interval based on Monte Carlo Standard Errors)
#>
#>
#> Parameter: fv
#>
#> Bias in point estimate:
#> fv_dist Cox, Gamma Cox, Log-Normal
#> Gamma -0.012 (-0.021, -0.003) 0.230 (0.215, 0.245)
#> Log-Normal -0.106 (-0.115, -0.098) -0.017 (-0.027, -0.008)
#> RP(P), Gamma RP(P), Log-Normal
#> -0.018 (-0.027, -0.009) 0.235 (0.220, 0.250)
#> -0.107 (-0.115, -0.098) -0.015 (-0.025, -0.006)
#>
#> Mean squared error:
#> fv_dist Cox, Gamma Cox, Log-Normal RP(P), Gamma
#> Gamma 0.020 (0.018, 0.022) 0.111 (0.100, 0.121) 0.020 (0.018, 0.021)
#> Log-Normal 0.029 (0.027, 0.031) 0.024 (0.022, 0.027) 0.028 (0.026, 0.030)
#> RP(P), Log-Normal
#> 0.114 (0.103, 0.126)
#> 0.025 (0.023, 0.027)
#>
#> Coverage of nominal 95% confidence interval:
#> fv_dist Cox, Gamma Cox, Log-Normal RP(P), Gamma
#> Gamma 0.920 (0.903, 0.937) 0.922 (0.905, 0.939) 0.930 (0.914, 0.946)
#> Log-Normal 0.750 (0.723, 0.778) 0.902 (0.884, 0.920) 0.768 (0.742, 0.794)
#> RP(P), Log-Normal
#> 0.903 (0.885, 0.921)
#> 0.928 (0.912, 0.944)
#>
#> --------------------------------------------------------------------------------
#>
#> Parameter: trt
#>
#> Bias in point estimate:
#> fv_dist Cox, Gamma Cox, Log-Normal
#> Gamma -0.001 (-0.004, 0.003) -0.001 (-0.004, 0.002)
#> Log-Normal -0.001 (-0.004, 0.002) -0.001 (-0.004, 0.002)
#> RP(P), Gamma RP(P), Log-Normal
#> -0.000 (-0.003, 0.003) -0.002 (-0.005, 0.002)
#> -0.001 (-0.004, 0.002) -0.002 (-0.005, 0.001)
#>
#> Mean squared error:
#> fv_dist Cox, Gamma Cox, Log-Normal RP(P), Gamma
#> Gamma 0.003 (0.002, 0.003) 0.003 (0.002, 0.003) 0.003 (0.002, 0.003)
#> Log-Normal 0.002 (0.002, 0.002) 0.002 (0.002, 0.002) 0.002 (0.002, 0.002)
#> RP(P), Log-Normal
#> 0.003 (0.002, 0.003)
#> 0.002 (0.002, 0.002)
#>
#> Coverage of nominal 95% confidence interval:
#> fv_dist Cox, Gamma Cox, Log-Normal RP(P), Gamma
#> Gamma 0.950 (0.936, 0.964) 0.949 (0.935, 0.963) 0.951 (0.937, 0.964)
#> Log-Normal 0.941 (0.926, 0.956) 0.942 (0.928, 0.956) 0.943 (0.928, 0.957)
#> RP(P), Log-Normal
#> 0.950 (0.936, 0.964)
#> 0.943 (0.929, 0.957)
# Printing values only:
print(sms, mcse = NULL)
#> Values are:
#> Point Estimate
#>
#>
#> Parameter: fv
#>
#> Bias in point estimate:
#> fv_dist Cox, Gamma Cox, Log-Normal RP(P), Gamma RP(P), Log-Normal
#> Gamma -0.0124 0.2299 -0.0179 0.2347
#> Log-Normal -0.1064 -0.0175 -0.1066 -0.0152
#>
#> Mean squared error:
#> fv_dist Cox, Gamma Cox, Log-Normal RP(P), Gamma RP(P), Log-Normal
#> Gamma 0.0203 0.1107 0.0195 0.1145
#> Log-Normal 0.0287 0.0244 0.0284 0.0248
#>
#> Coverage of nominal 95% confidence interval:
#> fv_dist Cox, Gamma Cox, Log-Normal RP(P), Gamma RP(P), Log-Normal
#> Gamma 0.9201 0.9220 0.9300 0.9030
#> Log-Normal 0.7503 0.9020 0.7683 0.9280
#>
#> --------------------------------------------------------------------------------
#>
#> Parameter: trt
#>
#> Bias in point estimate:
#> fv_dist Cox, Gamma Cox, Log-Normal RP(P), Gamma RP(P), Log-Normal
#> Gamma -0.0006 -0.0013 -0.0003 -0.0015
#> Log-Normal -0.0006 -0.0014 -0.0006 -0.0016
#>
#> Mean squared error:
#> fv_dist Cox, Gamma Cox, Log-Normal RP(P), Gamma RP(P), Log-Normal
#> Gamma 0.0026 0.0026 0.0026 0.0026
#> Log-Normal 0.0022 0.0022 0.0022 0.0022
#>
#> Coverage of nominal 95% confidence interval:
#> fv_dist Cox, Gamma Cox, Log-Normal RP(P), Gamma RP(P), Log-Normal
#> Gamma 0.9500 0.9490 0.9506 0.9500
#> Log-Normal 0.9410 0.9420 0.9428 0.9430