The summary()
method for objects of class multisimsum
returns confidence intervals for performance measures based on Monte Carlo standard errors.
Usage
# S3 method for multisimsum
summary(object, ci_level = 0.95, df = NULL, stats = NULL, ...)
Arguments
- object
An object of class
multisimsum
.- ci_level
Significance level for confidence intervals based on Monte Carlo standard errors. Ignored if a
multisimsum
object with control parametermcse = FALSE
is passed.- df
Degrees of freedom of a t distribution that will be used to calculate confidence intervals based on Monte Carlo standard errors. If
NULL
(the default), quantiles of a Normal distribution will be used instead.- stats
Summary statistics to include; can be a scalar value or a vector (for multiple summary statistics at once). Possible choices are:
nsim
, the number of replications with non-missing point estimates and standard error.thetamean
, average point estimate.thetamedian
, median point estimate.se2mean
, average standard error.se2median
, median standard error.bias
, bias in point estimate.rbias
, relative (to the true value) bias in point estimate.empse
, empirical standard error.mse
, mean squared error.relprec
, percentage gain in precision relative to the reference method.modelse
, model-based standard error.relerror
, relative percentage error in standard error.cover
, coverage of a nominallevel
\becover
, bias corrected coverage of a nominallevel
\power
, power of a (1 -level
)\ Defaults toNULL
, in which case all possible summary statistics are included.
- ...
Ignored.
Examples
data(frailty)
ms <- multisimsum(
data = frailty, par = "par", true = c(
trt = -0.50,
fv = 0.75
), estvarname = "b", se = "se", methodvar = "model",
by = "fv_dist"
)
#> 'ref' method was not specified, Cox, Gamma set as the reference
sms <- summary(ms)
sms
#> Values are:
#> Point Estimate (Monte Carlo Standard Error)
#>
#>
#> Parameter: fv
#>
#> Non-missing point estimates/standard errors:
#> fv_dist Cox, Gamma Cox, Log-Normal RP(P), Gamma RP(P), Log-Normal
#> Gamma 976 1000 971 1000
#> Log-Normal 957 1000 997 1000
#>
#> Average point estimate:
#> fv_dist Cox, Gamma Cox, Log-Normal RP(P), Gamma RP(P), Log-Normal
#> Gamma 0.7376 0.9799 0.7321 0.9847
#> Log-Normal 0.6436 0.7325 0.6434 0.7348
#>
#> Median point estimate:
#> fv_dist Cox, Gamma Cox, Log-Normal RP(P), Gamma RP(P), Log-Normal
#> Gamma 0.7271 0.9566 0.7225 0.9597
#> Log-Normal 0.6365 0.7182 0.6324 0.7199
#>
#> Average variance:
#> fv_dist Cox, Gamma Cox, Log-Normal RP(P), Gamma RP(P), Log-Normal
#> Gamma 0.0203 0.0600 0.0202 0.0498
#> Log-Normal 0.0156 0.0230 0.0158 0.0254
#>
#> Median variance:
#> fv_dist Cox, Gamma Cox, Log-Normal RP(P), Gamma RP(P), Log-Normal
#> Gamma 0.0193 0.0483 0.0191 0.0442
#> Log-Normal 0.0149 0.0206 0.0149 0.0235
#>
#> Bias in point estimate:
#> fv_dist Cox, Gamma Cox, Log-Normal RP(P), Gamma
#> Gamma -0.0124 (0.0045) 0.2299 (0.0076) -0.0179 (0.0044)
#> Log-Normal -0.1064 (0.0043) -0.0175 (0.0049) -0.1066 (0.0041)
#> RP(P), Log-Normal
#> 0.2347 (0.0077)
#> -0.0152 (0.0050)
#>
#> Relative bias in point estimate:
#> fv_dist Cox, Gamma Cox, Log-Normal RP(P), Gamma RP(P), Log-Normal
#> Gamma -0.0165 (NA) 0.3066 (0.0101) -0.0239 (NA) 0.3130 (0.0103)
#> Log-Normal -0.1419 (NA) -0.0233 (0.0066) -0.1421 (NA) -0.0203 (0.0066)
#>
#> Empirical standard error:
#> fv_dist Cox, Gamma Cox, Log-Normal RP(P), Gamma RP(P), Log-Normal
#> Gamma 0.1421 (0.0032) 0.2406 (0.0054) 0.1387 (0.0031) 0.2438 (0.0055)
#> Log-Normal 0.1320 (0.0030) 0.1554 (0.0035) 0.1307 (0.0029) 0.1570 (0.0035)
#>
#> % gain in precision relative to method Cox, Gamma:
#> fv_dist Cox, Gamma Cox, Log-Normal RP(P), Gamma RP(P), Log-Normal
#> Gamma 0.0000 (0.0000) -65.1290 (0.6149) 5.0048 (0.0507) -66.0342 (0.5911)
#> Log-Normal 0.0000 (0.0000) -27.8283 (1.5037) 2.0492 (0.0466) -29.3058 (1.4591)
#>
#> Mean squared error:
#> fv_dist Cox, Gamma Cox, Log-Normal RP(P), Gamma RP(P), Log-Normal
#> Gamma 0.0203 (0.0010) 0.1107 (0.0055) 0.0195 (0.0009) 0.1145 (0.0057)
#> Log-Normal 0.0287 (0.0010) 0.0244 (0.0011) 0.0284 (0.0010) 0.0248 (0.0012)
#>
#> Model-based standard error:
#> fv_dist Cox, Gamma Cox, Log-Normal RP(P), Gamma RP(P), Log-Normal
#> Gamma 0.1426 (0.0008) 0.2449 (0.0027) 0.1420 (0.0008) 0.2232 (0.0019)
#> Log-Normal 0.1249 (0.0008) 0.1517 (0.0013) 0.1258 (0.0007) 0.1594 (0.0011)
#>
#> Relative % error in standard error:
#> fv_dist Cox, Gamma Cox, Log-Normal RP(P), Gamma
#> Gamma 0.3574 (2.3463) 1.7896 (2.5449) 2.3922 (2.3950)
#> Log-Normal -5.3912 (2.2452) -2.3382 (2.3301) -3.7112 (2.2300)
#> RP(P), Log-Normal
#> -8.4531 (2.1890)
#> 1.5422 (2.3713)
#>
#> Coverage of nominal 95% confidence interval:
#> fv_dist Cox, Gamma Cox, Log-Normal RP(P), Gamma RP(P), Log-Normal
#> Gamma 0.9201 (0.0087) 0.9220 (0.0085) 0.9300 (0.0082) 0.9030 (0.0094)
#> Log-Normal 0.7503 (0.0140) 0.9020 (0.0094) 0.7683 (0.0134) 0.9280 (0.0082)
#>
#> Bias-eliminated coverage of nominal 95% confidence interval:
#> fv_dist Cox, Gamma Cox, Log-Normal RP(P), Gamma RP(P), Log-Normal
#> Gamma 0.9334 (0.0080) 0.8980 (0.0096) 0.9434 (0.0074) 0.8930 (0.0098)
#> Log-Normal 0.9164 (0.0089) 0.9130 (0.0089) 0.9308 (0.0080) 0.9360 (0.0077)
#>
#> Power of 5% level test:
#> fv_dist Cox, Gamma Cox, Log-Normal RP(P), Gamma RP(P), Log-Normal
#> Gamma 1.0000 (0.0000) 1.0000 (0.0000) 1.0000 (0.0000) 1.0000 (0.0000)
#> Log-Normal 1.0000 (0.0000) 1.0000 (0.0000) 1.0000 (0.0000) 1.0000 (0.0000)
#>
#> --------------------------------------------------------------------------------
#>
#> Parameter: trt
#>
#> Non-missing point estimates/standard errors:
#> fv_dist Cox, Gamma Cox, Log-Normal RP(P), Gamma RP(P), Log-Normal
#> Gamma 1000 1000 971 1000
#> Log-Normal 1000 1000 997 1000
#>
#> Average point estimate:
#> fv_dist Cox, Gamma Cox, Log-Normal RP(P), Gamma RP(P), Log-Normal
#> Gamma -0.5006 -0.5013 -0.5003 -0.5015
#> Log-Normal -0.5006 -0.5014 -0.5006 -0.5016
#>
#> Median point estimate:
#> fv_dist Cox, Gamma Cox, Log-Normal RP(P), Gamma RP(P), Log-Normal
#> Gamma -0.5011 -0.5021 -0.5010 -0.5025
#> Log-Normal -0.5014 -0.5021 -0.5014 -0.5022
#>
#> Average variance:
#> fv_dist Cox, Gamma Cox, Log-Normal RP(P), Gamma RP(P), Log-Normal
#> Gamma 0.0026 0.0026 0.0026 0.0026
#> Log-Normal 0.0023 0.0023 0.0023 0.0023
#>
#> Median variance:
#> fv_dist Cox, Gamma Cox, Log-Normal RP(P), Gamma RP(P), Log-Normal
#> Gamma 0.0026 0.0026 0.0026 0.0026
#> Log-Normal 0.0022 0.0022 0.0022 0.0022
#>
#> Bias in point estimate:
#> fv_dist Cox, Gamma Cox, Log-Normal RP(P), Gamma
#> Gamma -0.0006 (0.0016) -0.0013 (0.0016) -0.0003 (0.0016)
#> Log-Normal -0.0006 (0.0015) -0.0014 (0.0015) -0.0006 (0.0015)
#> RP(P), Log-Normal
#> -0.0015 (0.0016)
#> -0.0016 (0.0015)
#>
#> Relative bias in point estimate:
#> fv_dist Cox, Gamma Cox, Log-Normal RP(P), Gamma RP(P), Log-Normal
#> Gamma 0.0011 (0.0032) 0.0027 (0.0032) 0.0006 (NA) 0.0031 (0.0032)
#> Log-Normal 0.0012 (0.0030) 0.0028 (0.0030) 0.0013 (NA) 0.0032 (0.0030)
#>
#> Empirical standard error:
#> fv_dist Cox, Gamma Cox, Log-Normal RP(P), Gamma RP(P), Log-Normal
#> Gamma 0.0508 (0.0011) 0.0509 (0.0011) 0.0506 (0.0011) 0.0509 (0.0011)
#> Log-Normal 0.0474 (0.0011) 0.0474 (0.0011) 0.0473 (0.0011) 0.0474 (0.0011)
#>
#> % gain in precision relative to method Cox, Gamma:
#> fv_dist Cox, Gamma Cox, Log-Normal RP(P), Gamma RP(P), Log-Normal
#> Gamma 0.0000 (0.0000) -0.4457 (0.1133) 0.4394 (0.0845) -0.5782 (0.1641)
#> Log-Normal 0.0000 (0.0000) -0.1417 (0.1367) 0.0918 (0.0853) -0.2078 (0.1589)
#>
#> Mean squared error:
#> fv_dist Cox, Gamma Cox, Log-Normal RP(P), Gamma RP(P), Log-Normal
#> Gamma 0.0026 (0.0001) 0.0026 (0.0001) 0.0026 (0.0001) 0.0026 (0.0001)
#> Log-Normal 0.0022 (0.0001) 0.0022 (0.0001) 0.0022 (0.0001) 0.0022 (0.0001)
#>
#> Model-based standard error:
#> fv_dist Cox, Gamma Cox, Log-Normal RP(P), Gamma RP(P), Log-Normal
#> Gamma 0.0506 (0.0000) 0.0507 (0.0000) 0.0506 (0.0000) 0.0507 (0.0000)
#> Log-Normal 0.0475 (0.0000) 0.0475 (0.0000) 0.0475 (0.0000) 0.0475 (0.0000)
#>
#> Relative % error in standard error:
#> fv_dist Cox, Gamma Cox, Log-Normal RP(P), Gamma
#> Gamma -0.2017 (2.2346) -0.3890 (2.2304) -0.0544 (2.2710)
#> Log-Normal 0.2507 (2.2438) 0.1815 (2.2423) 0.3319 (2.2490)
#> RP(P), Log-Normal
#> -0.4330 (2.2294)
#> 0.2101 (2.2429)
#>
#> Coverage of nominal 95% confidence interval:
#> fv_dist Cox, Gamma Cox, Log-Normal RP(P), Gamma RP(P), Log-Normal
#> Gamma 0.9500 (0.0069) 0.9490 (0.0070) 0.9506 (0.0070) 0.9500 (0.0069)
#> Log-Normal 0.9410 (0.0075) 0.9420 (0.0074) 0.9428 (0.0074) 0.9430 (0.0073)
#>
#> Bias-eliminated coverage of nominal 95% confidence interval:
#> fv_dist Cox, Gamma Cox, Log-Normal RP(P), Gamma RP(P), Log-Normal
#> Gamma 0.9500 (0.0069) 0.9500 (0.0069) 0.9506 (0.0070) 0.9490 (0.0070)
#> Log-Normal 0.9420 (0.0074) 0.9400 (0.0075) 0.9428 (0.0074) 0.9410 (0.0075)
#>
#> Power of 5% level test:
#> fv_dist Cox, Gamma Cox, Log-Normal RP(P), Gamma RP(P), Log-Normal
#> Gamma 1.0000 (0.0000) 1.0000 (0.0000) 1.0000 (0.0000) 1.0000 (0.0000)
#> Log-Normal 1.0000 (0.0000) 1.0000 (0.0000) 1.0000 (0.0000) 1.0000 (0.0000)