A Tables

Table A.1: Bias, comparison with analytical formulae, scenario with a small frailty variance and a negative regression coefficient.
Sample size Method Lambda P Beta Theta
1000c. of 2i. AF 0.002 (0.002) 0.001 (0.001) -0.003 (0.002) -0.017 (0.008)
1000c. of 2i. IN 0.000 (0.002) 0.000 (0.001) -0.003 (0.002) -0.032 (0.008)
1000c. of 2i. GQ15 0.011 (0.002) 0.005 (0.001) -0.007 (0.002) 0.086 (0.003)
1000c. of 2i. GQ35 0.002 (0.002) 0.001 (0.001) -0.003 (0.002) -0.011 (0.008)
1000c. of 2i. GQ75 0.002 (0.002) 0.001 (0.001) -0.003 (0.002) -0.017 (0.008)
1000c. of 2i. GQ105 0.002 (0.002) 0.001 (0.001) -0.003 (0.002) -0.017 (0.008)
15c. of 100i. AF -0.008 (0.004) 0.002 (0.001) -0.001 (0.002) -0.146 (0.013)
15c. of 100i. IN -0.007 (0.004) 0.002 (0.001) -0.001 (0.002) -0.146 (0.013)
15c. of 100i. GQ15 -0.165 (0.008) 0.003 (0.001) -0.002 (0.002) 0.223 (0.013)
15c. of 100i. GQ35 -0.086 (0.006) 0.002 (0.001) -0.001 (0.002) -0.028 (0.013)
15c. of 100i. GQ75 -0.040 (0.005) 0.001 (0.001) -0.001 (0.002) -0.114 (0.013)
15c. of 100i. GQ105 -0.008 (0.005) 0.002 (0.001) -0.001 (0.002) -0.130 (0.013)
15c. of 30i. AF -0.010 (0.005) 0.002 (0.002) -0.007 (0.004) -0.215 (0.017)
15c. of 30i. IN -0.008 (0.005) 0.002 (0.002) -0.008 (0.004) -0.215 (0.017)
15c. of 30i. GQ15 -0.053 (0.007) 0.003 (0.002) -0.007 (0.004) -0.025 (0.014)
15c. of 30i. GQ35 -0.003 (0.005) 0.002 (0.002) -0.008 (0.004) -0.194 (0.021)
15c. of 30i. GQ75 -0.010 (0.005) 0.002 (0.002) -0.007 (0.004) -0.216 (0.017)
15c. of 30i. GQ105 -0.010 (0.005) 0.002 (0.002) -0.007 (0.004) -0.216 (0.017)
15c. of 500i. AF -0.011 (0.004) 0.000 (0.000) 0.001 (0.001) -0.142 (0.012)
15c. of 500i. IN -0.049 (0.005) 0.000 (0.000) 0.001 (0.001) -0.067 (0.013)
15c. of 500i. GQ15 -0.225 (0.009) 0.001 (0.000) 0.001 (0.001) 0.317 (0.015)
15c. of 500i. GQ35 -0.145 (0.006) 0.001 (0.000) 0.001 (0.001) 0.073 (0.013)
15c. of 500i. GQ75 -0.109 (0.005) 0.000 (0.000) 0.001 (0.001) -0.033 (0.012)
15c. of 500i. GQ105 -0.101 (0.005) 0.000 (0.000) 0.001 (0.001) -0.057 (0.012)
50c. of 100i. AF 0.000 (0.002) 0.000 (0.001) -0.002 (0.001) -0.044 (0.007)
50c. of 100i. IN 0.001 (0.002) 0.000 (0.001) -0.002 (0.001) -0.045 (0.007)
50c. of 100i. GQ15 -0.207 (0.006) 0.001 (0.001) -0.003 (0.001) 0.316 (0.009)
50c. of 100i. GQ35 -0.088 (0.004) 0.000 (0.001) -0.002 (0.001) 0.062 (0.007)
50c. of 100i. GQ75 -0.020 (0.003) 0.000 (0.001) -0.002 (0.001) -0.025 (0.007)
50c. of 100i. GQ105 -0.002 (0.003) 0.000 (0.001) -0.002 (0.001) -0.036 (0.007)
50c. of 30i. AF -0.002 (0.003) 0.000 (0.001) -0.002 (0.002) -0.046 (0.008)
50c. of 30i. IN -0.002 (0.003) 0.000 (0.001) -0.004 (0.002) -0.043 (0.008)
50c. of 30i. GQ15 -0.045 (0.004) 0.001 (0.001) -0.003 (0.002) 0.082 (0.007)
50c. of 30i. GQ35 -0.002 (0.003) 0.000 (0.001) -0.002 (0.002) -0.038 (0.008)
50c. of 30i. GQ75 -0.002 (0.003) 0.000 (0.001) -0.002 (0.002) -0.046 (0.008)
50c. of 30i. GQ105 -0.002 (0.003) 0.000 (0.001) -0.002 (0.002) -0.046 (0.008)
Table A.2: Coverage, comparison with analytical formulae, scenario with a small frailty variance and a negative regression coefficient.
Sample size Method Lambda P Beta Theta
1000c. of 2i. AF 94.20 (0.74) 95.50 (0.66) 95.00 (0.69) 96.50 (0.58)
1000c. of 2i. IN 93.42 (0.78) 95.70 (0.64) 93.02 (0.81) 77.45 (1.32)
1000c. of 2i. GQ15 93.60 (0.77) 95.40 (0.66) 95.10 (0.68) 98.70 (0.36)
1000c. of 2i. GQ35 94.29 (0.73) 95.10 (0.68) 95.30 (0.67) 95.90 (0.63)
1000c. of 2i. GQ75 94.20 (0.74) 95.50 (0.66) 95.00 (0.69) 96.50 (0.58)
1000c. of 2i. GQ105 94.20 (0.74) 95.50 (0.66) 95.00 (0.69) 96.50 (0.58)
15c. of 100i. AF 92.40 (0.84) 95.50 (0.66) 94.70 (0.71) 92.60 (0.83)
15c. of 100i. IN 90.65 (0.92) 95.48 (0.66) 94.45 (0.72) 92.39 (0.84)
15c. of 100i. GQ15 27.80 (1.42) 94.60 (0.71) 94.90 (0.70) 86.70 (1.07)
15c. of 100i. GQ35 44.04 (1.57) 94.79 (0.70) 94.89 (0.70) 93.99 (0.75)
15c. of 100i. GQ75 66.00 (1.50) 95.10 (0.68) 95.10 (0.68) 93.00 (0.81)
15c. of 100i. GQ105 76.20 (1.35) 95.50 (0.66) 94.80 (0.70) 92.50 (0.83)
15c. of 30i. AF 92.70 (0.82) 95.00 (0.69) 94.70 (0.71) 94.50 (0.72)
15c. of 30i. IN 92.21 (0.85) 94.91 (0.69) 94.08 (0.75) 93.15 (0.80)
15c. of 30i. GQ15 68.10 (1.47) 94.70 (0.71) 94.70 (0.71) 93.10 (0.80)
15c. of 30i. GQ35 88.91 (0.99) 94.61 (0.71) 94.20 (0.74) 95.23 (0.67)
15c. of 30i. GQ75 92.50 (0.83) 95.00 (0.69) 94.70 (0.71) 94.10 (0.75)
15c. of 30i. GQ105 92.70 (0.82) 95.00 (0.69) 94.60 (0.71) 94.60 (0.71)
15c. of 500i. AF 92.50 (0.83) 95.40 (0.66) 95.70 (0.64) 91.60 (0.88)
15c. of 500i. IN 31.74 (1.47) 95.02 (0.69) 95.63 (0.65) 91.25 (0.89)
15c. of 500i. GQ15 11.00 (0.99) 92.50 (0.83) 94.90 (0.70) 80.40 (1.26)
15c. of 500i. GQ35 14.20 (1.10) 93.80 (0.76) 95.70 (0.64) 91.50 (0.88)
15c. of 500i. GQ75 18.40 (1.23) 94.80 (0.70) 95.90 (0.63) 93.40 (0.79)
15c. of 500i. GQ105 22.00 (1.31) 95.20 (0.68) 95.40 (0.66) 93.20 (0.80)
50c. of 100i. AF 95.40 (0.66) 94.90 (0.70) 94.30 (0.73) 93.30 (0.79)
50c. of 100i. IN 93.07 (0.80) 94.56 (0.72) 93.82 (0.76) 91.68 (0.87)
50c. of 100i. GQ15 17.20 (1.19) 94.30 (0.73) 94.70 (0.71) 60.60 (1.55)
50c. of 100i. GQ35 37.80 (1.53) 94.60 (0.71) 94.30 (0.73) 91.50 (0.88)
50c. of 100i. GQ75 69.80 (1.45) 94.80 (0.70) 94.50 (0.72) 93.70 (0.77)
50c. of 100i. GQ105 82.90 (1.19) 94.90 (0.70) 94.20 (0.74) 93.60 (0.77)
50c. of 30i. AF 93.80 (0.76) 95.30 (0.67) 95.30 (0.67) 95.40 (0.66)
50c. of 30i. IN 92.65 (0.83) 95.28 (0.67) 94.73 (0.71) 93.30 (0.79)
50c. of 30i. GQ15 71.90 (1.42) 95.00 (0.69) 95.10 (0.68) 92.60 (0.83)
50c. of 30i. GQ35 92.00 (0.86) 95.10 (0.68) 95.10 (0.68) 93.90 (0.76)
50c. of 30i. GQ75 93.80 (0.76) 95.40 (0.66) 95.20 (0.68) 95.40 (0.66)
50c. of 30i. GQ105 93.70 (0.77) 95.30 (0.67) 95.30 (0.67) 95.40 (0.66)
Table A.3: Mean squared error, comparison with analytical formulae, scenario with a small frailty variance and a negative regression coefficient.
Sample size Method Lambda P Beta Theta
1000c. of 2i. AF 0.0026 0.0008 0.0042 0.0670
1000c. of 2i. IN 0.0024 0.0008 0.0041 0.0635
1000c. of 2i. GQ15 0.0024 0.0007 0.0042 0.0159
1000c. of 2i. GQ35 0.0025 0.0008 0.0042 0.0571
1000c. of 2i. GQ75 0.0026 0.0008 0.0042 0.0668
1000c. of 2i. GQ105 0.0026 0.0008 0.0042 0.0669
15c. of 100i. AF 0.0190 0.0009 0.0045 0.1886
15c. of 100i. IN 0.0193 0.0009 0.0046 0.1880
15c. of 100i. GQ15 0.0867 0.0009 0.0046 0.2116
15c. of 100i. GQ35 0.0432 0.0009 0.0046 0.1621
15c. of 100i. GQ75 0.0274 0.0009 0.0045 0.1816
15c. of 100i. GQ105 0.0242 0.0009 0.0045 0.1877
15c. of 30i. AF 0.0262 0.0029 0.0157 0.3341
15c. of 30i. IN 0.0259 0.0029 0.0158 0.3353
15c. of 30i. GQ15 0.0517 0.0029 0.0161 0.2038
15c. of 30i. GQ35 0.0283 0.0029 0.0159 0.4801
15c. of 30i. GQ75 0.0263 0.0029 0.0157 0.3365
15c. of 30i. GQ105 0.0262 0.0029 0.0157 0.3414
15c. of 500i. AF 0.0169 0.0002 0.0009 0.1691
15c. of 500i. IN 0.0284 0.0002 0.0009 0.1835
15c. of 500i. GQ15 0.1315 0.0002 0.0009 0.3364
15c. of 500i. GQ35 0.0599 0.0002 0.0009 0.1638
15c. of 500i. GQ75 0.0394 0.0002 0.0009 0.1486
15c. of 500i. GQ105 0.0345 0.0002 0.0009 0.1477
50c. of 100i. AF 0.0053 0.0003 0.0014 0.0487
50c. of 100i. IN 0.0054 0.0003 0.0014 0.0488
50c. of 100i. GQ15 0.0816 0.0003 0.0014 0.1827
50c. of 100i. GQ35 0.0242 0.0003 0.0014 0.0555
50c. of 100i. GQ75 0.0095 0.0003 0.0014 0.0480
50c. of 100i. GQ105 0.0076 0.0003 0.0014 0.0491
50c. of 30i. AF 0.0073 0.0009 0.0047 0.0628
50c. of 30i. IN 0.0074 0.0009 0.0047 0.0629
50c. of 30i. GQ15 0.0180 0.0009 0.0048 0.0560
50c. of 30i. GQ35 0.0082 0.0009 0.0047 0.0647
50c. of 30i. GQ75 0.0073 0.0009 0.0047 0.0627
50c. of 30i. GQ105 0.0073 0.0009 0.0047 0.0628
Table A.4: Bias, comparison without analytical formulae, scenario with a small frailty variance and a negative regression coefficient.
Sample size Method Lambda P Beta Sigma
1000c. of 2i. GQ15 0.0187 (0.0012) -0.0415 (0.0008) 0.0149 (0.0019) -0.3010 (0.0250)
1000c. of 2i. GQ35 0.0188 (0.0012) -0.0415 (0.0008) 0.0144 (0.0019) -0.2842 (0.0232)
1000c. of 2i. GQ75 0.0188 (0.0012) -0.0415 (0.0008) 0.0146 (0.0019) -0.3057 (0.0254)
1000c. of 2i. GQ105 0.0187 (0.0012) -0.0415 (0.0008) 0.0147 (0.0019) -0.2946 (0.0243)
15c. of 100i. GQ15 0.0102 (0.0040) -0.0332 (0.0010) 0.0552 (0.0040) 0.0282 (0.0113)
15c. of 100i. GQ35 0.0102 (0.0040) -0.0333 (0.0010) 0.0173 (0.0024) -0.0854 (0.0085)
15c. of 100i. GQ75 0.0102 (0.0040) -0.0333 (0.0010) 0.0088 (0.0022) -0.1015 (0.0075)
15c. of 100i. GQ105 0.0102 (0.0040) -0.0333 (0.0010) 0.0088 (0.0022) -0.1015 (0.0075)
15c. of 30i. GQ15 0.0193 (0.0045) -0.0348 (0.0017) 0.0047 (0.0039) -0.2510 (0.0272)
15c. of 30i. GQ35 0.0192 (0.0045) -0.0348 (0.0017) 0.0041 (0.0039) -0.2455 (0.0256)
15c. of 30i. GQ75 0.0191 (0.0045) -0.0348 (0.0017) 0.0041 (0.0039) -0.2593 (0.0275)
15c. of 30i. GQ105 0.0195 (0.0045) -0.0347 (0.0017) 0.0040 (0.0039) -0.2522 (0.0265)
15c. of 500i. GQ15 0.0113 (0.0037) -0.0411 (0.0006) 0.0867 (0.0050) 0.2427 (0.0104)
15c. of 500i. GQ35 0.0157 (0.0038) -0.0423 (0.0006) 0.0860 (0.0040) 0.4011 (0.0091)
15c. of 500i. GQ75 0.0078 (0.0036) -0.0405 (0.0005) 0.0707 (0.0033) 0.4020 (0.0112)
15c. of 500i. GQ105 0.0059 (0.0036) -0.0410 (0.0006) 0.0600 (0.0028) 0.3119 (0.0125)
50c. of 100i. GQ15 0.0135 (0.0022) -0.0365 (0.0005) 0.0244 (0.0020) -0.0095 (0.0049)
50c. of 100i. GQ35 0.0135 (0.0022) -0.0365 (0.0005) 0.0102 (0.0012) -0.0350 (0.0038)
50c. of 100i. GQ75 0.0135 (0.0022) -0.0365 (0.0005) 0.0105 (0.0012) -0.0350 (0.0037)
50c. of 100i. GQ105 0.0135 (0.0022) -0.0365 (0.0005) 0.0105 (0.0012) -0.0350 (0.0037)
50c. of 30i. GQ15 0.0154 (0.0025) -0.0367 (0.0009) 0.0079 (0.0021) -0.0535 (0.0052)
50c. of 30i. GQ35 0.0154 (0.0025) -0.0367 (0.0009) 0.0079 (0.0021) -0.0536 (0.0052)
50c. of 30i. GQ75 0.0154 (0.0025) -0.0367 (0.0009) 0.0079 (0.0021) -0.0536 (0.0052)
50c. of 30i. GQ105 0.0154 (0.0025) -0.0367 (0.0009) 0.0079 (0.0021) -0.0536 (0.0052)
Table A.5: Coverage, comparison without analytical formulae, scenario with a small frailty variance and a negative regression coefficient.
Sample size Method Lambda P Beta Sigma
1000c. of 2i. GQ15 92.5662 (0.8295) 64.8676 (1.5096) 94.5010 (0.7209) 99.0835 (0.3013)
1000c. of 2i. GQ35 92.4413 (0.8359) 64.7600 (1.5107) 94.6885 (0.7092) 99.0807 (0.3018)
1000c. of 2i. GQ75 92.4720 (0.8343) 64.6999 (1.5113) 94.6083 (0.7142) 99.0844 (0.3012)
1000c. of 2i. GQ105 92.5586 (0.8299) 64.8318 (1.5100) 94.5973 (0.7149) 99.0826 (0.3015)
15c. of 100i. GQ15 52.1000 (1.5797) 76.4000 (1.3428) 86.0000 (1.0973) 70.2000 (1.4464)
15c. of 100i. GQ35 52.1000 (1.5797) 76.5000 (1.3408) 98.8000 (0.3443) 88.9000 (0.9934)
15c. of 100i. GQ75 52.1000 (1.5797) 76.4000 (1.3428) 99.9000 (0.0999) 94.0000 (0.7510)
15c. of 100i. GQ105 52.1000 (1.5797) 76.4000 (1.3428) 99.9000 (0.0999) 94.1000 (0.7451)
15c. of 30i. GQ15 75.4016 (1.3619) 90.0602 (0.9461) 99.0964 (0.2992) 98.3936 (0.3976)
15c. of 30i. GQ35 75.3769 (1.3624) 90.2513 (0.9380) 99.0955 (0.2994) 99.1960 (0.2824)
15c. of 30i. GQ75 75.4263 (1.3614) 90.0702 (0.9457) 99.0973 (0.2991) 99.2979 (0.2640)
15c. of 30i. GQ105 75.5020 (1.3600) 90.0602 (0.9461) 99.0964 (0.2992) 99.2972 (0.2642)
15c. of 500i. GQ15 30.0813 (1.4503) 21.3415 (1.2956) 27.6423 (1.4143) 23.1707 (1.3342)
15c. of 500i. GQ35 27.8826 (1.4180) 17.8197 (1.2101) 37.1069 (1.5277) 15.7233 (1.1511)
15c. of 500i. GQ75 30.1053 (1.4506) 18.9474 (1.2392) 55.5789 (1.5713) 16.6316 (1.1775)
15c. of 500i. GQ105 29.1028 (1.4364) 18.3807 (1.2248) 67.8337 (1.4771) 32.1663 (1.4771)
50c. of 100i. GQ15 51.9000 (1.5800) 37.8000 (1.5333) 94.8000 (0.7021) 85.6000 (1.1102)
50c. of 100i. GQ35 51.9000 (1.5800) 37.5000 (1.5309) 100.0000 (0.0000) 95.0000 (0.6892)
50c. of 100i. GQ75 51.9000 (1.5800) 37.5000 (1.5309) 100.0000 (0.0000) 94.9000 (0.6957)
50c. of 100i. GQ105 51.9000 (1.5800) 37.5000 (1.5309) 100.0000 (0.0000) 94.9000 (0.6957)
50c. of 30i. GQ15 73.9000 (1.3888) 74.1000 (1.3853) 99.4000 (0.2442) 97.2000 (0.5217)
50c. of 30i. GQ35 73.9000 (1.3888) 74.1000 (1.3853) 99.4000 (0.2442) 97.2000 (0.5217)
50c. of 30i. GQ75 73.9000 (1.3888) 74.1000 (1.3853) 99.4000 (0.2442) 97.2000 (0.5217)
50c. of 30i. GQ105 73.9000 (1.3888) 74.1000 (1.3853) 99.4000 (0.2442) 97.2000 (0.5217)
Table A.6: Mean squared error, comparison without analytical formulae, scenario with a small frailty variance and a negative regression coefficient.
Sample size Method Lambda P Beta Sigma
1000c. of 2i. GQ15 0.0019 0.0024 0.0040 0.7180
1000c. of 2i. GQ35 0.0019 0.0024 0.0039 0.6198
1000c. of 2i. GQ75 0.0019 0.0024 0.0039 0.7394
1000c. of 2i. GQ105 0.0019 0.0024 0.0039 0.6752
15c. of 100i. GQ15 0.0164 0.0021 0.0189 0.1285
15c. of 100i. GQ35 0.0164 0.0021 0.0063 0.0790
15c. of 100i. GQ75 0.0164 0.0022 0.0048 0.0665
15c. of 100i. GQ105 0.0164 0.0022 0.0048 0.0665
15c. of 30i. GQ15 0.0208 0.0041 0.0152 0.8029
15c. of 30i. GQ35 0.0208 0.0040 0.0149 0.7164
15c. of 30i. GQ75 0.0208 0.0041 0.0149 0.8228
15c. of 30i. GQ105 0.0207 0.0041 0.0149 0.7636
15c. of 500i. GQ15 0.0141 0.0020 0.0326 0.1666
15c. of 500i. GQ35 0.0146 0.0021 0.0234 0.2438
15c. of 500i. GQ75 0.0131 0.0019 0.0160 0.2881
15c. of 500i. GQ105 0.0129 0.0020 0.0113 0.2542
50c. of 100i. GQ15 0.0048 0.0016 0.0046 0.0237
50c. of 100i. GQ35 0.0048 0.0016 0.0015 0.0153
50c. of 100i. GQ75 0.0048 0.0016 0.0015 0.0153
50c. of 100i. GQ105 0.0048 0.0016 0.0015 0.0153
50c. of 30i. GQ15 0.0066 0.0022 0.0043 0.0301
50c. of 30i. GQ35 0.0066 0.0022 0.0043 0.0300
50c. of 30i. GQ75 0.0066 0.0022 0.0043 0.0300
50c. of 30i. GQ105 0.0066 0.0022 0.0043 0.0300
Table A.7: Bias with Monte Carlo standard error of estimated regression coefficient, simulation study on model misspecification in survival models with shared frailty terms, scenario with 15 clusters of 100 individuals each and a small frailty variance.
True frailty Model frailty Model baseline Exponential Weibull Gompertz Weibull-Weibull (1) Weibull-Weibull (2)
Gamma Gamma Cox 0.001 (0.002) 0.007 (0.002) 0.009 (0.002) 0.013 (0.002) -0.007 (0.002)
Gamma Gamma Exp -0.002 (0.002) -0.083 (0.003) 0.133 (0.002) 0.102 (0.002) -0.116 (0.002)
Gamma Gamma Wei -0.002 (0.002) 0.002 (0.002) 0.034 (0.002) -0.067 (0.002) 0.000 (0.002)
Gamma Gamma Gom -0.006 (0.002) -0.086 (0.003) -0.002 (0.002) 0.028 (0.002) -0.114 (0.002)
Gamma Gamma RP(5) -0.002 (0.002) -0.001 (0.002) -0.002 (0.002) -0.002 (0.002) -0.001 (0.002)
Gamma Gamma RP(9) -0.002 (0.002) -0.001 (0.002) -0.002 (0.002) -0.001 (0.002) -0.002 (0.002)
Gamma Gamma RP(P) -0.002 (0.002) -0.001 (0.002) 0.003 (0.002) 0.000 (0.002) -0.000 (0.002)
Log-Normal Gamma Cox 0.004 (0.002) -0.002 (0.002) 0.000 (0.002) -0.006 (0.002) 0.002 (0.002)
Log-Normal Gamma Exp 0.001 (0.002) -0.085 (0.002) 0.136 (0.001) 0.100 (0.002) -0.115 (0.002)
Log-Normal Gamma Wei 0.001 (0.002) -0.002 (0.002) 0.038 (0.002) -0.066 (0.002) 0.001 (0.002)
Log-Normal Gamma Gom 0.001 (0.002) -0.085 (0.002) 0.003 (0.002) 0.022 (0.002) -0.115 (0.002)
Log-Normal Gamma RP(5) 0.002 (0.002) -0.002 (0.002) 0.003 (0.002) 0.001 (0.002) 0.008 (0.002)
Log-Normal Gamma RP(9) 0.002 (0.002) -0.002 (0.002) 0.003 (0.002) 0.002 (0.002) 0.007 (0.002)
Log-Normal Gamma RP(P) 0.002 (0.002) -0.002 (0.002) 0.008 (0.002) 0.003 (0.002) 0.009 (0.002)
Gamma Log-Normal Cox -0.002 (0.002) 0.001 (0.002) -0.002 (0.002) -0.001 (0.002) 0.001 (0.002)
Gamma Log-Normal Exp -0.002 (0.002) -0.083 (0.003) 0.133 (0.002) 0.102 (0.002) -0.116 (0.002)
Gamma Log-Normal Wei -0.002 (0.002) 0.001 (0.002) 0.034 (0.002) -0.067 (0.002) 0.000 (0.002)
Gamma Log-Normal Gom -0.005 (0.002) -0.084 (0.003) -0.002 (0.002) 0.027 (0.002) -0.115 (0.002)
Gamma Log-Normal RP(5) -0.002 (0.002) -0.001 (0.002) -0.002 (0.002) -0.002 (0.002) -0.001 (0.002)
Gamma Log-Normal RP(9) -0.002 (0.002) -0.001 (0.002) -0.002 (0.002) -0.001 (0.002) -0.002 (0.002)
Gamma Log-Normal RP(P) -0.002 (0.002) -0.001 (0.002) 0.003 (0.002) 0.000 (0.002) -0.000 (0.002)
Log-Normal Log-Normal Cox 0.001 (0.002) -0.002 (0.002) 0.003 (0.002) 0.002 (0.002) 0.002 (0.002)
Log-Normal Log-Normal Exp 0.001 (0.002) -0.086 (0.002) 0.136 (0.001) 0.100 (0.002) -0.115 (0.002)
Log-Normal Log-Normal Wei 0.001 (0.002) -0.002 (0.002) 0.038 (0.002) -0.066 (0.002) 0.001 (0.002)
Log-Normal Log-Normal Gom 0.001 (0.002) -0.084 (0.002) 0.003 (0.002) 0.022 (0.002) -0.114 (0.002)
Log-Normal Log-Normal RP(5) 0.001 (0.002) -0.002 (0.002) 0.003 (0.002) 0.001 (0.002) 0.008 (0.002)
Log-Normal Log-Normal RP(9) 0.001 (0.002) -0.002 (0.002) 0.003 (0.002) 0.002 (0.002) 0.007 (0.002)
Log-Normal Log-Normal RP(P) 0.001 (0.002) -0.002 (0.002) 0.007 (0.002) 0.003 (0.002) 0.009 (0.002)
Table A.8: Coverage with Monte Carlo standard error of estimated regression coefficient, simulation study on model misspecification in survival models with shared frailty terms, scenario with 15 clusters of 100 individuals each and a small frailty variance.
True frailty Model frailty Model baseline Exponential Weibull Gompertz Weibull-Weibull (1) Weibull-Weibull (2)
Gamma Gamma Cox 93.68 (0.77) 96.17 (0.61) 93.33 (0.79) 93.33 (0.79) 93.33 (0.79)
Gamma Gamma Exp 95.20 (0.68) 72.60 (1.41) 35.30 (1.51) 53.80 (1.58) 49.20 (1.58)
Gamma Gamma Wei 95.20 (0.68) 95.50 (0.66) 91.70 (0.87) 72.80 (1.41) 94.59 (0.72)
Gamma Gamma Gom 95.67 (0.64) 70.21 (1.45) 94.80 (0.70) 89.98 (0.95) 49.87 (1.58)
Gamma Gamma RP(5) 95.09 (0.68) 95.27 (0.67) 94.89 (0.70) 94.27 (0.73) 93.64 (0.77)
Gamma Gamma RP(9) 95.09 (0.68) 95.27 (0.67) 95.00 (0.69) 94.35 (0.73) 93.64 (0.77)
Gamma Gamma RP(P) 95.17 (0.68) 95.42 (0.66) 94.59 (0.72) 94.36 (0.73) 93.64 (0.77)
Log-Normal Gamma Cox 95.55 (0.65) 94.79 (0.70) 97.18 (0.52) 92.68 (0.82) 92.59 (0.83)
Log-Normal Gamma Exp 95.30 (0.67) 74.80 (1.37) 35.40 (1.51) 53.30 (1.58) 47.50 (1.58)
Log-Normal Gamma Wei 95.50 (0.66) 95.00 (0.69) 91.50 (0.88) 74.10 (1.39) 94.68 (0.71)
Log-Normal Gamma Gom 95.28 (0.67) 76.13 (1.35) 95.40 (0.66) 93.17 (0.80) 49.22 (1.58)
Log-Normal Gamma RP(5) 95.30 (0.67) 96.20 (0.60) 95.49 (0.66) 95.38 (0.66) 95.73 (0.64)
Log-Normal Gamma RP(9) 95.30 (0.67) 96.35 (0.59) 95.39 (0.66) 95.05 (0.69) 95.73 (0.64)
Log-Normal Gamma RP(P) 95.60 (0.65) 96.20 (0.60) 95.60 (0.65) 94.92 (0.69) 95.30 (0.67)
Gamma Log-Normal Cox 95.20 (0.68) 95.30 (0.67) 95.00 (0.69) 94.30 (0.73) 94.70 (0.71)
Gamma Log-Normal Exp 95.19 (0.68) 72.37 (1.41) 35.30 (1.51) 53.80 (1.58) 48.95 (1.58)
Gamma Log-Normal Wei 95.19 (0.68) 95.50 (0.66) 91.69 (0.87) 73.22 (1.40) 94.68 (0.71)
Gamma Log-Normal Gom 95.94 (0.62) 71.47 (1.43) 94.99 (0.69) 90.42 (0.93) 49.48 (1.58)
Gamma Log-Normal RP(5) 95.09 (0.68) 95.27 (0.67) 94.90 (0.70) 94.20 (0.74) 93.64 (0.77)
Gamma Log-Normal RP(9) 95.09 (0.68) 95.27 (0.67) 94.90 (0.70) 94.30 (0.73) 93.64 (0.77)
Gamma Log-Normal RP(P) 95.09 (0.68) 95.42 (0.66) 94.60 (0.71) 94.50 (0.72) 93.64 (0.77)
Log-Normal Log-Normal Cox 95.20 (0.68) 95.40 (0.66) 95.30 (0.67) 95.10 (0.68) 94.80 (0.70)
Log-Normal Log-Normal Exp 95.30 (0.67) 74.87 (1.37) 35.40 (1.51) 53.20 (1.58) 47.59 (1.58)
Log-Normal Log-Normal Wei 95.49 (0.66) 95.10 (0.68) 91.59 (0.88) 73.92 (1.39) 94.78 (0.70)
Log-Normal Log-Normal Gom 94.75 (0.71) 76.04 (1.35) 95.39 (0.66) 93.17 (0.80) 48.99 (1.58)
Log-Normal Log-Normal RP(5) 95.20 (0.68) 96.50 (0.58) 95.49 (0.66) 95.40 (0.66) 95.73 (0.64)
Log-Normal Log-Normal RP(9) 95.30 (0.67) 96.35 (0.59) 95.39 (0.66) 95.10 (0.68) 95.73 (0.64)
Log-Normal Log-Normal RP(P) 95.40 (0.66) 96.05 (0.62) 95.70 (0.64) 94.90 (0.70) 95.73 (0.64)
Table A.9: Mean squared error of estimated regression coefficient, simulation study on model misspecification in survival models with shared frailty terms, scenario with 15 clusters of 100 individuals each and a small frailty variance.
True frailty Model frailty Model baseline Exponential Weibull Gompertz Weibull-Weibull (1) Weibull-Weibull (2)
Gamma Gamma Cox 0.005 0.005 0.004 0.005 0.004
Gamma Gamma Exp 0.004 0.013 0.020 0.013 0.019
Gamma Gamma Wei 0.004 0.005 0.005 0.009 0.003
Gamma Gamma Gom 0.004 0.014 0.004 0.004 0.018
Gamma Gamma RP(5) 0.004 0.004 0.004 0.003 0.004
Gamma Gamma RP(9) 0.004 0.004 0.004 0.003 0.004
Gamma Gamma RP(P) 0.004 0.004 0.004 0.003 0.004
Log-Normal Gamma Cox 0.004 0.005 0.004 0.003 0.003
Log-Normal Gamma Exp 0.004 0.013 0.020 0.012 0.018
Log-Normal Gamma Wei 0.004 0.005 0.005 0.009 0.003
Log-Normal Gamma Gom 0.004 0.013 0.004 0.004 0.019
Log-Normal Gamma RP(5) 0.004 0.004 0.004 0.003 0.003
Log-Normal Gamma RP(9) 0.004 0.004 0.004 0.003 0.003
Log-Normal Gamma RP(P) 0.004 0.004 0.004 0.003 0.003
Gamma Log-Normal Cox 0.004 0.005 0.004 0.003 0.003
Gamma Log-Normal Exp 0.004 0.014 0.020 0.013 0.019
Gamma Log-Normal Wei 0.004 0.005 0.005 0.009 0.003
Gamma Log-Normal Gom 0.004 0.013 0.004 0.004 0.018
Gamma Log-Normal RP(5) 0.004 0.004 0.004 0.003 0.004
Gamma Log-Normal RP(9) 0.004 0.004 0.004 0.003 0.004
Gamma Log-Normal RP(P) 0.004 0.004 0.004 0.003 0.004
Log-Normal Log-Normal Cox 0.004 0.005 0.004 0.003 0.003
Log-Normal Log-Normal Exp 0.004 0.014 0.020 0.012 0.018
Log-Normal Log-Normal Wei 0.004 0.005 0.005 0.009 0.003
Log-Normal Log-Normal Gom 0.004 0.013 0.004 0.004 0.018
Log-Normal Log-Normal RP(5) 0.004 0.004 0.004 0.003 0.003
Log-Normal Log-Normal RP(9) 0.004 0.004 0.004 0.003 0.003
Log-Normal Log-Normal RP(P) 0.004 0.004 0.004 0.003 0.003
Table A.10: Bias with Monte Carlo standard error of estimated frailty variance, simulation study on model misspecification in survival models with shared frailty terms, scenario with 15 clusters of 100 individuals each and a small frailty variance.
True frailty Model frailty Model baseline Exponential Weibull Gompertz Weibull-Weibull (1) Weibull-Weibull (2)
Gamma Gamma Cox -0.096 (0.002) -0.087 (0.002) -0.144 (0.001) -0.177 (0.001) -0.164 (0.001)
Gamma Gamma Exp -0.014 (0.003) 0.056 (0.004) -0.116 (0.002) -0.090 (0.002) 0.091 (0.004)
Gamma Gamma Wei -0.014 (0.003) -0.020 (0.003) -0.043 (0.003) 0.049 (0.003) -0.015 (0.003)
Gamma Gamma Gom -0.018 (0.003) 0.063 (0.004) -0.013 (0.003) -0.042 (0.002) 0.089 (0.004)
Gamma Gamma RP(5) -0.014 (0.003) -0.020 (0.003) -0.013 (0.003) -0.011 (0.003) -0.024 (0.003)
Gamma Gamma RP(9) -0.014 (0.003) -0.020 (0.003) -0.013 (0.003) -0.012 (0.003) -0.023 (0.003)
Gamma Gamma RP(P) -0.015 (0.003) -0.020 (0.003) -0.018 (0.003) -0.016 (0.003) -0.024 (0.003)
Log-Normal Gamma Cox -0.113 (0.001) -0.102 (0.001) -0.148 (0.001) -0.182 (0.001) -0.168 (0.001)
Log-Normal Gamma Exp -0.048 (0.003) 0.016 (0.004) -0.147 (0.001) -0.130 (0.001) 0.047 (0.004)
Log-Normal Gamma Wei -0.048 (0.003) -0.057 (0.003) -0.081 (0.002) -0.009 (0.003) -0.056 (0.002)
Log-Normal Gamma Gom -0.054 (0.003) 0.022 (0.004) -0.053 (0.003) -0.080 (0.002) 0.040 (0.004)
Log-Normal Gamma RP(5) -0.048 (0.003) -0.058 (0.003) -0.053 (0.003) -0.057 (0.002) -0.065 (0.002)
Log-Normal Gamma RP(9) -0.048 (0.003) -0.058 (0.003) -0.053 (0.003) -0.057 (0.002) -0.065 (0.002)
Log-Normal Gamma RP(P) -0.048 (0.003) -0.058 (0.003) -0.057 (0.002) -0.059 (0.002) -0.066 (0.002)
Gamma Log-Normal Cox 0.037 (0.004) 0.027 (0.004) 0.038 (0.004) 0.039 (0.004) 0.033 (0.004)
Gamma Log-Normal Exp 0.016 (0.004) 0.091 (0.005) -0.101 (0.003) -0.067 (0.003) 0.144 (0.005)
Gamma Log-Normal Wei 0.016 (0.004) 0.006 (0.004) -0.018 (0.003) 0.104 (0.005) 0.019 (0.004)
Gamma Log-Normal Gom 0.014 (0.004) 0.089 (0.005) 0.017 (0.004) -0.009 (0.003) 0.138 (0.005)
Gamma Log-Normal RP(5) 0.016 (0.004) 0.007 (0.004) 0.017 (0.004) 0.019 (0.004) 0.007 (0.004)
Gamma Log-Normal RP(9) 0.016 (0.004) 0.007 (0.004) 0.017 (0.004) 0.018 (0.004) 0.007 (0.004)
Gamma Log-Normal RP(P) 0.016 (0.004) 0.007 (0.004) 0.012 (0.004) 0.017 (0.004) 0.006 (0.004)
Log-Normal Log-Normal Cox -0.023 (0.003) -0.032 (0.003) -0.028 (0.003) -0.032 (0.003) -0.029 (0.003)
Log-Normal Log-Normal Exp -0.039 (0.003) 0.027 (0.004) -0.142 (0.002) -0.121 (0.002) 0.066 (0.004)
Log-Normal Log-Normal Wei -0.039 (0.003) -0.048 (0.003) -0.073 (0.002) 0.014 (0.003) -0.043 (0.003)
Log-Normal Log-Normal Gom -0.049 (0.003) 0.031 (0.004) -0.043 (0.003) -0.064 (0.002) 0.066 (0.004)
Log-Normal Log-Normal RP(5) -0.039 (0.003) -0.049 (0.003) -0.043 (0.003) -0.047 (0.002) -0.056 (0.002)
Log-Normal Log-Normal RP(9) -0.039 (0.003) -0.049 (0.003) -0.043 (0.003) -0.047 (0.002) -0.056 (0.002)
Log-Normal Log-Normal RP(P) -0.039 (0.003) -0.048 (0.003) -0.047 (0.003) -0.048 (0.002) -0.057 (0.002)
Table A.11: Coverage with Monte Carlo standard error of estimated frailty variance, simulation study on model misspecification in survival models with shared frailty terms, scenario with 15 clusters of 100 individuals each and a small frailty variance.
True frailty Model frailty Model baseline Exponential Weibull Gompertz Weibull-Weibull (1) Weibull-Weibull (2)
Gamma Gamma Cox 59.48 (1.55) 64.26 (1.52) 5.71 (0.73) 0.00 (0.00) 2.22 (0.47)
Gamma Gamma Exp 85.70 (1.11) 94.50 (0.72) 38.10 (1.54) 54.90 (1.57) 96.80 (0.56)
Gamma Gamma Wei 86.10 (1.09) 83.30 (1.18) 77.20 (1.33) 95.80 (0.63) 85.60 (1.11)
Gamma Gamma Gom 82.35 (1.21) 96.28 (0.60) 85.70 (1.11) 83.06 (1.19) 96.42 (0.59)
Gamma Gamma RP(5) 85.97 (1.10) 83.36 (1.18) 85.77 (1.10) 86.83 (1.07) 80.45 (1.25)
Gamma Gamma RP(9) 85.87 (1.10) 83.36 (1.18) 85.80 (1.10) 86.90 (1.07) 81.36 (1.23)
Gamma Gamma RP(P) 86.02 (1.10) 83.36 (1.18) 85.09 (1.13) 86.37 (1.08) 80.45 (1.25)
Log-Normal Gamma Cox 47.66 (1.58) 55.37 (1.57) 6.78 (0.79) 0.00 (0.00) 0.00 (0.00)
Log-Normal Gamma Exp 76.80 (1.33) 89.00 (0.99) 17.80 (1.21) 28.30 (1.42) 93.50 (0.78)
Log-Normal Gamma Wei 77.10 (1.33) 72.60 (1.41) 61.70 (1.54) 90.20 (0.94) 73.62 (1.39)
Log-Normal Gamma Gom 74.20 (1.38) 90.98 (0.91) 74.70 (1.37) 66.47 (1.49) 91.41 (0.89)
Log-Normal Gamma RP(5) 76.48 (1.34) 72.04 (1.42) 75.05 (1.37) 73.69 (1.39) 71.37 (1.43)
Log-Normal Gamma RP(9) 76.78 (1.34) 72.04 (1.42) 74.92 (1.37) 73.54 (1.40) 71.37 (1.43)
Log-Normal Gamma RP(P) 76.98 (1.33) 72.04 (1.42) 73.17 (1.40) 72.36 (1.41) 71.37 (1.43)
Gamma Log-Normal Cox 84.50 (1.14) 82.20 (1.21) 83.30 (1.18) 84.40 (1.15) 82.50 (1.20)
Gamma Log-Normal Exp 87.78 (1.04) 96.00 (0.62) 45.70 (1.58) 63.30 (1.52) 96.80 (0.56)
Gamma Log-Normal Wei 87.88 (1.03) 85.89 (1.10) 80.88 (1.24) 96.99 (0.54) 88.23 (1.02)
Gamma Log-Normal Gom 86.29 (1.09) 96.60 (0.57) 88.08 (1.02) 86.84 (1.07) 97.38 (0.50)
Gamma Log-Normal RP(5) 87.68 (1.04) 85.95 (1.10) 88.10 (1.02) 89.60 (0.97) 85.91 (1.10)
Gamma Log-Normal RP(9) 87.68 (1.04) 85.95 (1.10) 88.20 (1.02) 89.50 (0.97) 85.91 (1.10)
Gamma Log-Normal RP(P) 87.78 (1.04) 85.95 (1.10) 87.50 (1.05) 89.20 (0.98) 85.91 (1.10)
Log-Normal Log-Normal Cox 76.70 (1.34) 73.80 (1.39) 76.00 (1.35) 74.00 (1.39) 72.60 (1.41)
Log-Normal Log-Normal Exp 80.18 (1.26) 91.09 (0.90) 21.70 (1.30) 36.50 (1.52) 94.38 (0.73)
Log-Normal Log-Normal Wei 79.84 (1.27) 77.48 (1.32) 66.87 (1.49) 92.08 (0.85) 77.89 (1.31)
Log-Normal Log-Normal Gom 77.34 (1.32) 92.97 (0.81) 77.56 (1.32) 71.36 (1.43) 92.42 (0.84)
Log-Normal Log-Normal RP(5) 80.08 (1.26) 76.44 (1.34) 77.66 (1.32) 77.58 (1.32) 77.35 (1.32)
Log-Normal Log-Normal RP(9) 79.98 (1.27) 76.44 (1.34) 77.66 (1.32) 77.38 (1.32) 77.35 (1.32)
Log-Normal Log-Normal RP(P) 79.88 (1.27) 76.60 (1.34) 76.78 (1.34) 77.20 (1.33) 77.35 (1.32)
Table A.12: Mean squared error of estimated frailty variance, simulation study on model misspecification in survival models with shared frailty terms, scenario with 15 clusters of 100 individuals each and a small frailty variance.
True frailty Model frailty Model baseline Exponential Weibull Gompertz Weibull-Weibull (1) Weibull-Weibull (2)
Gamma Gamma Cox 0.012 0.010 0.021 0.032 0.027
Gamma Gamma Exp 0.009 0.017 0.017 0.013 0.023
Gamma Gamma Wei 0.009 0.009 0.009 0.013 0.008
Gamma Gamma Gom 0.009 0.017 0.009 0.006 0.022
Gamma Gamma RP(5) 0.009 0.009 0.009 0.008 0.008
Gamma Gamma RP(9) 0.009 0.009 0.009 0.008 0.008
Gamma Gamma RP(P) 0.009 0.009 0.009 0.008 0.008
Log-Normal Gamma Cox 0.014 0.012 0.023 0.033 0.028
Log-Normal Gamma Exp 0.009 0.014 0.024 0.019 0.015
Log-Normal Gamma Wei 0.009 0.010 0.011 0.007 0.009
Log-Normal Gamma Gom 0.009 0.015 0.009 0.010 0.015
Log-Normal Gamma RP(5) 0.009 0.010 0.009 0.009 0.009
Log-Normal Gamma RP(9) 0.009 0.010 0.009 0.009 0.009
Log-Normal Gamma RP(P) 0.009 0.010 0.009 0.009 0.009
Gamma Log-Normal Cox 0.018 0.017 0.019 0.016 0.017
Gamma Log-Normal Exp 0.014 0.030 0.017 0.012 0.048
Gamma Log-Normal Wei 0.014 0.014 0.012 0.032 0.015
Gamma Log-Normal Gom 0.014 0.030 0.015 0.009 0.045
Gamma Log-Normal RP(5) 0.014 0.014 0.015 0.013 0.012
Gamma Log-Normal RP(9) 0.014 0.014 0.015 0.013 0.012
Gamma Log-Normal RP(P) 0.014 0.014 0.015 0.013 0.012
Log-Normal Log-Normal Cox 0.009 0.009 0.009 0.008 0.009
Log-Normal Log-Normal Exp 0.009 0.015 0.023 0.017 0.020
Log-Normal Log-Normal Wei 0.009 0.009 0.011 0.010 0.009
Log-Normal Log-Normal Gom 0.009 0.015 0.009 0.009 0.022
Log-Normal Log-Normal RP(5) 0.009 0.010 0.009 0.008 0.009
Log-Normal Log-Normal RP(9) 0.009 0.010 0.009 0.008 0.009
Log-Normal Log-Normal RP(P) 0.009 0.010 0.009 0.008 0.009
Table A.13: Bias with Monte Carlo standard error of difference in 5-years life expectancy, simulation study on model misspecification in survival models with shared frailty terms, scenario with 15 clusters of 100 individuals each and a small frailty variance.
True frailty Model frailty Model baseline Exponential Weibull Gompertz Weibull-Weibull (1) Weibull-Weibull (2)
Gamma Gamma Cox 0.008 (0.003) -0.000 (0.003) 0.003 (0.002) 0.009 (0.003) 0.053 (0.003)
Gamma Gamma Exp 0.001 (0.003) 0.024 (0.003) -0.038 (0.002) -0.008 (0.002) 0.072 (0.003)
Gamma Gamma Wei 0.001 (0.003) -0.001 (0.003) -0.023 (0.002) 0.061 (0.002) 0.019 (0.003)
Gamma Gamma Gom 0.005 (0.003) 0.030 (0.003) 0.001 (0.002) 0.037 (0.002) 0.069 (0.003)
Gamma Gamma RP(5) 0.001 (0.003) 0.000 (0.003) 0.000 (0.002) -0.005 (0.002) 0.013 (0.003)
Gamma Gamma RP(9) 0.001 (0.003) 0.000 (0.003) 0.001 (0.002) -0.002 (0.002) 0.012 (0.003)
Gamma Gamma RP(P) 0.001 (0.003) 0.001 (0.003) -0.003 (0.002) -0.001 (0.002) 0.014 (0.003)
Log-Normal Gamma Cox 0.001 (0.003) 0.008 (0.003) 0.006 (0.002) 0.032 (0.002) 0.033 (0.003)
Log-Normal Gamma Exp -0.000 (0.003) 0.028 (0.003) -0.040 (0.002) -0.009 (0.002) 0.064 (0.003)
Log-Normal Gamma Wei -0.000 (0.003) 0.006 (0.003) -0.025 (0.002) 0.060 (0.002) 0.013 (0.003)
Log-Normal Gamma Gom -0.000 (0.003) 0.027 (0.003) -0.002 (0.002) 0.040 (0.002) 0.066 (0.003)
Log-Normal Gamma RP(5) -0.000 (0.003) 0.005 (0.003) -0.002 (0.002) -0.011 (0.002) -0.009 (0.002)
Log-Normal Gamma RP(9) -0.000 (0.003) 0.005 (0.003) -0.002 (0.002) -0.009 (0.002) -0.010 (0.002)
Log-Normal Gamma RP(P) -0.000 (0.003) 0.005 (0.003) -0.006 (0.002) -0.007 (0.002) -0.008 (0.002)
Gamma Log-Normal Cox -0.012 (0.003) -0.016 (0.003) -0.004 (0.002) 0.066 (0.002) 0.045 (0.003)
Gamma Log-Normal Exp -0.022 (0.003) -0.004 (0.003) -0.048 (0.002) 0.003 (0.002) 0.118 (0.003)
Gamma Log-Normal Wei -0.022 (0.003) -0.025 (0.003) -0.035 (0.002) 0.094 (0.002) 0.042 (0.003)
Gamma Log-Normal Gom -0.020 (0.003) -0.000 (0.004) -0.016 (0.002) 0.056 (0.002) 0.116 (0.003)
Gamma Log-Normal RP(5) 0.014 (0.003) 0.016 (0.003) 0.011 (0.002) 0.017 (0.002) 0.045 (0.003)
Gamma Log-Normal RP(9) 0.014 (0.003) 0.016 (0.003) 0.011 (0.002) 0.020 (0.002) 0.044 (0.003)
Gamma Log-Normal RP(P) 0.014 (0.003) 0.016 (0.003) 0.007 (0.002) 0.021 (0.002) 0.046 (0.003)
Log-Normal Log-Normal Cox -0.009 (0.003) -0.006 (0.003) -0.005 (0.002) 0.053 (0.002) 0.036 (0.003)
Log-Normal Log-Normal Exp -0.017 (0.003) 0.008 (0.003) -0.047 (0.002) 0.001 (0.002) 0.109 (0.003)
Log-Normal Log-Normal Wei -0.017 (0.003) -0.012 (0.003) -0.034 (0.002) 0.088 (0.002) 0.035 (0.003)
Log-Normal Log-Normal Gom -0.016 (0.003) 0.005 (0.003) -0.015 (0.002) 0.056 (0.002) 0.106 (0.003)
Log-Normal Log-Normal RP(5) 0.013 (0.003) 0.020 (0.003) 0.007 (0.002) 0.006 (0.002) 0.019 (0.003)
Log-Normal Log-Normal RP(9) 0.013 (0.003) 0.020 (0.003) 0.007 (0.002) 0.009 (0.002) 0.018 (0.003)
Log-Normal Log-Normal RP(P) 0.013 (0.003) 0.020 (0.003) 0.004 (0.002) 0.010 (0.002) 0.020 (0.003)
Table A.14: Mean squared error of difference in 5-years life expectancy, simulation study on model misspecification in survival models with shared frailty terms, scenario with 15 clusters of 100 individuals each and a small frailty variance.
True frailty Model frailty Model baseline Exponential Weibull Gompertz Weibull-Weibull (1) Weibull-Weibull (2)
Gamma Gamma Cox 0.008 0.010 0.005 0.009 0.010
Gamma Gamma Exp 0.007 0.012 0.005 0.005 0.014
Gamma Gamma Wei 0.007 0.010 0.004 0.010 0.008
Gamma Gamma Gom 0.007 0.013 0.004 0.007 0.014
Gamma Gamma RP(5) 0.007 0.009 0.005 0.005 0.009
Gamma Gamma RP(9) 0.007 0.009 0.004 0.005 0.009
Gamma Gamma RP(P) 0.007 0.009 0.004 0.005 0.009
Log-Normal Gamma Cox 0.008 0.010 0.004 0.006 0.008
Log-Normal Gamma Exp 0.007 0.011 0.005 0.005 0.014
Log-Normal Gamma Wei 0.007 0.009 0.005 0.010 0.008
Log-Normal Gamma Gom 0.007 0.011 0.004 0.007 0.014
Log-Normal Gamma RP(5) 0.007 0.009 0.004 0.005 0.006
Log-Normal Gamma RP(9) 0.007 0.009 0.004 0.005 0.006
Log-Normal Gamma RP(P) 0.007 0.009 0.004 0.005 0.006
Gamma Log-Normal Cox 0.007 0.010 0.004 0.009 0.009
Gamma Log-Normal Exp 0.008 0.012 0.006 0.005 0.023
Gamma Log-Normal Wei 0.008 0.011 0.005 0.015 0.009
Gamma Log-Normal Gom 0.008 0.013 0.005 0.009 0.022
Gamma Log-Normal RP(5) 0.008 0.010 0.005 0.006 0.011
Gamma Log-Normal RP(9) 0.008 0.010 0.005 0.006 0.011
Gamma Log-Normal RP(P) 0.008 0.010 0.005 0.006 0.011
Log-Normal Log-Normal Cox 0.007 0.009 0.004 0.008 0.008
Log-Normal Log-Normal Exp 0.007 0.011 0.006 0.005 0.021
Log-Normal Log-Normal Wei 0.007 0.010 0.005 0.014 0.009
Log-Normal Log-Normal Gom 0.008 0.010 0.005 0.009 0.020
Log-Normal Log-Normal RP(5) 0.008 0.009 0.005 0.005 0.007
Log-Normal Log-Normal RP(9) 0.008 0.009 0.005 0.005 0.007
Log-Normal Log-Normal RP(P) 0.008 0.009 0.004 0.005 0.007